
A USER-CENTRIC COMMUNICATION MIDDLEWARE FOR CVM
Yali Wu, Andrew A. Allen, Frank Hernandez, Yingbo Wang and Peter J. Clarke

School of Computing and Information Sciences
Florida International University

Miami, FL 33199, USA
email: {ywu001, aalle004, fhern006, ywang002, clarkep}@cis.fiu.edu

ABSTRACT
The advances in communication frameworks, such

as Skype and Google Talk facilitate the increasing needs
of communication-intensive and collaborative applications.
These communication frameworks also make it possible for
end-users to be more involved in the development of such
applications if the appropriate level of abstraction can be
provided.

In this paper, we propose the design of a user-centric
communication middleware (UCM) that supports raising
the level of abstraction appropriate for end-users to create
and realize models using the communication virtual ma-
chine (CVM) technology. The CVM technology consists of
the communication modeling language (CML) and CVM,
and supports the rapid conception, construction and realiza-
tion of new communication services using a model-driven
approach. The UCM is a layer in CVM that provides oper-
ating simplicity to the end-user by masking the underlying
technology. We present the design goals of UCM, high-
level architecture, a description of the runtime environment
and a case study showing how the communication needs of
a medical scenario is realized in the UCM.

KEY WORDS
Abstraction, Middleware, Communication Services.

1 Introduction

The recent proliferation of multimedia communication
frameworks, such as Skype [1] and Google Talk [2] is
drawing people’s attention from all aspects of society. They
provide essential communication services including video
conferencing, instance messaging,IP telephony, email, and
file transfer. The access to these communication services
has increased the need for end-users to be more involved
in developing user-centric communication-intensive appli-
cations. User-centric means focusing on the benefits for
the user and offering operating simplicity to mask the com-
plexity of the underlying technology [3].

Deng et al.[4], developed a new technology, commu-
nication virtual machine (CVM) that raises the level of
abstraction appropriate for end-users to create and real-
ize communication models. The CVM technology consists
of the communication modeling language (CML) [5] and

CVM, and supports the rapid conception, construction and
realization of new communication services using a model-
driven approach [6]. The User-Centric Communication
Middleware(UCM) is designed as one of the layered com-
ponents of CVM to enforce communication requirements
as captured by CML models as well as facilitating the real-
ization of platform independent models (PIM) in CML into
platform specific models(PSM) related to particular frame-
works. UCM extends traditional middleware by encapsu-
lating communication services into a self-contained com-
munication control script, which is executed by invoking
the APIs provided by the network communication broker
(NCB) in the CVM.

In this paper we describe how the UCM supports rais-
ing the level of abstraction in the CVM and enables the
rapid realization of communication-intensive applications.
The specific contributions of the paper are as follows:

1. The mechanisms of the control scripts and macros
used by UCM to support raising the level of abstrac-
tion are described.

2. The architecture of the UCM and the runtime envi-
ronment, including algorithms to generate and execute
the macros, are presented.

3. A case study describing the realization of the commu-
nication services for a medical scenario is described.

In the next section we present background on commu-
nication middlewares and CVM. Section 3 describes high-
level design goals of UCM. Sections 4 and 5 describe the
control scripts and macros, and UCM architecture. Section
6 explains the execution environment. Section 7 presents
the case study for a medical scenario. Section 8 describes
the related work and we conclude in Section 9.

2 Background

In this section we describe concepts related to middleware
and give an overview of the communication virtual ma-
chine (CVM).

2.1 Communication Middleware

The middleware approach has emerged as a promising so-
lution for heterogeniety and distribution problems in the
design of complex distributed systems [7, 8]. It provides

632-061 210

debbie
New Stamp

Figure 1. Layered Architecture of the CVM.

standard programming interfaces and protocols to the ap-
plication layer, enabling applications to interact with other
applications or services transparently in the distributed en-
vironment. The distributed programming models all per-
form synchronization, marshalling, mapping data represen-
tation, and network communication.

There is a special class of middleware that focuses
on multimedia communications that is more suited to the
work presented in this paper. This type of middleware ex-
hibits special features needed for multimedia communica-
tion. These features include: event notifications, logging,
multimedia streaming, persistence, security, fault tolerance
and distributed concurrency control [9].

2.2 Communication Virtual Machine

The CVM technology [4] consists of a communication
modeling language (CML) [5] and CVM. The CVM tech-
nology supports rapid conception, construction and realiza-
tion of new communication services using a model-driven
approach. CML supports the modeling of communication-
intensive applications by domain end-users. The mod-
els created using CML are referred to as communication
schemas and represent the configuration of the participants
in the communication and the media (or media structures
- forms) to be exchanged between the participants. Forms
allow individual media to have actions and constraints that
can be applied during realization.

CVM uses a layered architecture to support the real-
ization of communication applications. Different concerns
of this process are separated and encapsulated into self-
contained components with well-defined interfaces and re-
sponsibility. The principal separation of concern provides
the basis for automation and flexibility. The major layers
of abstraction in the CVM architecture are:

• User communication interface (UCI), provides a lan-
guage environment for users to specify their commu-
nication requirements in CML, as a declarative PIM

• Synthesis engine (SE), is a suite of algorithms to au-
tomatically synthesize a user communication schema
instance to an executable form called a communica-
tion control script, which is an imperative PIM
• User-centric communication middleware (UCM), ex-

ecutes the communication control script to manage
and coordinate the delivery of communication ser-
vices independently of underlying network configura-
tions, acting as a bridge from PIM to PSM
• Network communication broker (NCB), provides a

network-independent API to UCM and works with the
underlying network protocols to deliver the communi-
cation services [10], directly interfacing with PSM

3 Design Goals for UCM

While UCM has the core concepts of traditional middle-
ware, its role in facilitating the development of communi-
cation intensive applications in CVM requires the middle-
ware be tuned for a model driven approach. Specifically,
UCM should aid the transformation of declative PIM into
PSM. In this section, we will investigate major design goals
of UCM that realize the vision of a transformative commu-
nication middleware.

Raising the level of abstraction : Middleware at its most
basic is about solving heterogeneity and distribution [7].
Specifically in the context of model-driven development,
automation of model realization as a software application
requires a middleware framework that masks the complex-
ity of the underlying infrastructure software (PSM mod-
els). UCM must solve these problems in the context of the
model-driven approach used by CVM [4]. It therefore must
provide a less complex API to SE and equally important,
an API that facilitates ease in transformation from PIM to
PSM. These challenges result in the first goal of UCM : the
provision of higher level service abstractions that provide
both rich and easy-to-use interfaces to ease the realization
of communication services.

Flexible and Extensible Functionality : To render flexible
and extensible functionality of the communication middle-
ware, it is important to separate interface and implementa-
tion of communication services through a modular design.
For our design to be good, we need to clearly separate the
interfaces exposed to the service requester, in this case the
Synthesis Engine, with the logic that implements these in-
terfaces, which we will introduce later as macros. This ap-
proach ensures the ease of change and adaptation in satis-
fying application request.

Fault tolerance capabilities : In case of an unexpected sit-
uation, a reliable middleware framework should not ’crash’
the runtime engine but rather generate exceptions. With
that in mind, exception handlers are required by the UCM
which would listen for any abnormal behaviors in the run-
time of the service realization processes and perform ex-
ception recovery and resolution mechanisms accordingly.

211

Script Command Parameter Name Parameter Type Purpose
createConnections connectionID String Create a local session and map the session

to the designated conection
sendSchema connectionID, senderID, recipientList, String, String, List Send schemas across for the purpose of

control-schema, data-schema String, String schema negotiation
addParticipants connectionID, participantList String, List Add the negotiated participants into the

established connection
enableMedia connectionID, mediaName String, String Start streaming media, such as live audio
sendMedia connectionID, mediaName, mediaURL String, String, String Send a nonstream mediuam such as a file
sendForm connectionID, formID, mediumList String, String, List Send a form which is a complex data

consisting of multiple simple medium

Table 1. Supported Control Script Command.

Network independent execution : To avoid the communi-
cation middleware being closely tied to any particular net-
work protocols and platforms, the design of UCM should
not be limited to communication platforms like Skype API,
but instead generate a set of network independent method
invocations that could run on multiple platforms. There-
fore, a broker facility is needed between UCM and network
platforms to support network independent execution. The
Network Communication Broker (NCB) in the CVM ar-
chitecture provides us such a facility, which dynamically
selects and configures the underlying platform based on ap-
plication needs and platform capabilities[11].

4 Control Scripts and Macros

In this section, the mechanisms of control scripts and
macros used by UCM are discussed to show how it raises
the level of abstraction in CVM to facilitate rapid realiza-
tion of communication-intensive applications.

4.1 Communication Control Script

Following the demand for a higher level of abstraction than
full APIs provided by traditional middleware frameworks,
the UCM accepts a communication control script that rep-
resents network-independent control logic for user-level
communication sessions. This high level control script is
concerned with the general primitives of establishing com-
munication such as connection creation, adding or remov-
ing participants and media transmission. It also incorpo-
rates application specific issues of communication services,
such as the enforcement of user defined policies, communi-
cation constraints (e.g., if bandwidth is low then substitute
video with images) or security properties (e.g. encrypt all
patient data). The high level control script facilitates model
transformations in CVM in that declarative communication
models could be synthesized into the script in the synthe-
sis engine (SE), converted into the appropriate macros and
then executed in the UCM.

Syntactically, a control script from SE to UCM
consists of one or more script commands, each com-
mand similar to a method call in the form of command-
Name(paramList). Each script command encapsulates a
piece of self-contained functionality. Table 1 shows a par-
tial list of script commands that are currently implemented
in UCM. The four columns in Table 1 consist of the script

commands, parameter names, parameter types and a short
description of each command.

4.2 Macros

Macros are programming language statements that, when
processed, generate a sequence of more detailed language
statements. We view a macro here as the basic atomic
unit for the execution of a control script, representing a
mapping from a script command to a method-like tem-
plate that contains the detailed execution steps for real-
izing a single communication service. Syntactically, we
define a macro as follows: macro (name:string, return-
Type:string, paramTypeList:string, paramNameList:string,
script:string) where name is the unique name of the macro,
returnType is the type of the object returned by the macro,
paramTypeList is the list of parameter types that are passed
as arguments to the macro, paramNameList is the list of
parameter names, and script is the source code contain-
ing the functionality of the macro. Macros encapsulate not
only general application-specific communication function-
alities, but also customized event and exception handling
mechanisms. As new exceptions occur with newly added
functionalities, corresponding exception handling macros
could be added to the repository for completeness.

To support the operational semantics of the control
script and increase the efficiency of the UCM it is required
that the macros provide a mechanism to support synchro-
nization. To resolve the synchronization issues with macro
execution, macros can be tagged as either blocking or non-
blocking. Depending on the type of macros, the script in-
terpreter will either block that connection for a target event,
or execute the macro in a non-blocking manner. Details of
macro synchonrization would be explained in Section 6.

Macros provide a way of extending functionalities
and adapting to new QoS requirements in a faster man-
ner. They could be developed, maintained, and stored in
the repository offline, or loaded and instantiated at runtime
. An example of a macro is shown in Table 2.

5 UCM Architecture

In our design of UCM, we used the microkernal and repos-
itory architectural patterns to guide the process of subsys-
tem decomposition. The resulting architectural diagram is
shown in Figure 2. We identified several components that
together form a self-contained execution platform for an

212

Name createConnections
paramNameList connectID
paramTypeList java.lang.String
returnType cvm.ucm.handlers.exception.ConnectIDException
Exceptions cvm.ucm.handlers.exception.ConnectIDException
script import static java.lang.String

import static cvm.ucm.handlers.
exception.ConnectIDException;

if(connectID == null) {
ConnectIDException exception = new

ConnectIDException();
return exception; }

ncb.createSession(connectID);
return null;

Table 2. Macro for createConnections Script.

incoming communication control script. In this subsection,
we will explain the functionality for each component:

1. SE-UCM Interface - Exposing the functionality of
UCM to the upper layer SE. Through this interface,
application specific services could be realized by sim-
ply generating a high level control script without
knowing about details of service realization process.

2. UCM Manager - Coordinating the activities of UCM.
It dispatches the control script to the script interpreter
and keeps track of the status for each uncompleted
script. It is also responsible for notifying the SE of
all SE events and signaling the script interpreter re-
garding the status update for connections.

3. Script Interpreter - Parsing and interpreting the con-
trol script by loading corresponding macros from the
repository and handling execution runtime to realize
the communication described in the control script.

4. Repository Manager - Facade to the repository sub-
system, which store macros that define detailed ex-
ecution logic for the control script, as well as other
runtime information.

5. Exception Handler - Deciding how to act on excep-
tions received due to control script faults, or bad func-
tion call returns. This ensures the fault tolerance of
the framework by avoiding system crashes in case of
an unexpected failure.

6. Event Handler - Coordinating and orchestrating the
events raised by NCB as well as deciding what to do
in each case. Due to the different types of events, dif-
ferent event handling mechanisms will be applied.

7. UCM-NCB Interface - Interfacing with the NCB layer
for the management of network sessions. This en-
sures the network independent execution of the con-
trol script, due to NCB’s interoperability with multiple
available communication frameworks.

6 UCM Execution Environment

As an execution environment within CVM, UCM is de-
signed to perform a series of service processes that provide
a framework for the execution of communication control
scripts, including system initialization, macro loading and
interpretation, exception and event handling and runtime

UCM-SE Interface

UCM Manager

Repository

Manager

Script Interpreter

Event Handler

UCM-NCB Interface

Local Repository

(macros, logging)

UCM

NCB-specific

commands

Exception

Handler

Figure 2. Block Diagram for UCM.

1: Build Executable Macro List
/* Input: Control Script - consist of one or more script commands*/

2: for all script command i in Control Script do
3: load macro i
4: substitute values in script command i in macro i parameters
5: append macro i to executable macro list
6: if macro i is of type BLOCKING then
7: append macro SLEEP CONNECTION to executable macro list
8: append macro HANDLE SIGNAL to executable macro list
9: end if

10: end for

Figure 3. Algorithm to Build Executable Macro List.

media management In this section, we present details for
three of the major runtime system activities.

Dynamic loading and execution: Dynamic loading means
that macros are only loaded on demand, like the way class
loaders work in the Java Runtime Environment. Upon re-
ceipt of a control script, the UCM manager delegates the
execution request to the script interpreter. A control script
includes one or more script commands, each of these script
commands is evaluated and their execution done in a se-
quential manner. Script interpretation can be viewed as a
two phase process, the first phase involving dynamic load-
ing of the macro and the second one involving macro exe-
cution.

The loading process, see Figure 3, parses the con-
trol script and for each script command the correspond-
ing macro is loaded from the repository, instantiated with
actual parameters, then appended to the execution macro
list(EML). As discussed in Section 4.2, a macro can be
tagged as blocking indicating that some event generated by
the lower layers as an effect of its execution must be re-
ceived before continuing the execution sequence of the ex-
ecutable macro list. As such two additional system macros
are appended after each blocking macro in the EML, see
Figure 3 step 6 to 9, to ensure that further processing of
commands for the specific connection will wait while free-
ing the interpreter to process other connections’ requests.

The SLEEP CONNECTION macro is a special flag
macro to put the EML for a specific connection to sleep. As
Figure 4 steps 3 to 7 shows, it will increment the counter

213

to the next macro to be executed in the EML, signals to the
UCM Manager to update the status of the queue for the spe-
cific connection to ”blocking” and then saves the EML to
the repository. The execution of this specific EML is termi-
nated and the interpreter is made available to other EMLs.
The receipt of the event will have the interpreter load the
EML from the repository and the event processed, as in
steps 9 to 12 in the case of a HANDLE SINGAL macro,
another flag macro for handling received events. A ”suc-
cessful” event allows the EML to continue its execution se-
quence. The macro definition for createConnections
is shown in Table 2. As seen, similar to a method invo-
cation, the source code contained in the macro is executed
with the values of the parameters replaced by actual values.

Runtime Media Management: During the process of me-
dia transmission, certain media management information
needs to be maintained beyond the script runtime for the
purpose of handling media requests in a controlled man-
ner. This includes the location of the media, parties that
are authorized to share it, and possibly other constraints
on the media. This runtime media information could be
saved in a media mapping table stored in the repository. At
runtime, when a macro like sendForm finishes execution,
this information is saved in the medium table, and possi-
bly retrieved later to handle a remote media request. In this
way, runtime media delivery are controlled and enforced in
UCM.

Exception handling : To provide a flexible way of catch-
ing unexpected situations as well as predictable errors, we
design the exception handler in such a way that besides the
general exception handling, customized exception resolu-
tion mechanisms could be added offline and loaded at run-
time. Macro developers could define new exception han-
dling mechanisms and store them as macros in the reposi-
tory. As a runtime exception occurs, the exception handler
will handle it accordingly if it is a recognizable exception,
otherwise it would delegate it to the manager to load ap-
propriate macro for exception handling, as in the case of a
customized exception.

7 Case Study

In this section, we describe a case study in the healthcare
domain to show the role of UCM in the development of
user-centric communication applications. We will first in-
troduce a communication scenario involving a post surgery
conference, and then walk through the process of realizing
it in UCM. Future work in extending the macro facility and
self testing of control scripts are also discussed.

7.1 Communication Scenario

Scenario : Patient John Demo has been referred by
Dr. Sanchez (a heart specialist) for heart surgery. Dr.
Burke performs the surgery on John. After surgery, Dr.

1: Execute Macro List
/*Input: Executable Macro List(EML) - consist of one or more macros
current macro - macro to be executed
i.ConID - Connection Identifier for control script request */

2: for all macro i in EML do
3: if macro i is a SLEEP CONNECTION macro then
4: set current macro to macro i+1 in EML
5: signal UCM Manager to block new scripts from macro i.ConID
6: save EML to repository
7: terminate execution of EML
8: else if macro i is a HANDLE SIGNAL macro then
9: if event type SUCCESSFUL then

10: set current macro to macro i+1 in EML
11: else
12: generate an exception for the event
13: end if
14: else
15: run macro i // e.g Table 1
16: set current macro to macro i+1 in EML
17: end if
18: end for

Figure 4. Algorithm to Execute Executable Macro List.

Burke contacts the referring doctor, Dr. Sanchez, and
the attending physician, Dr. Monteiro, to let them know
that the surgery went well, and to share several aspects
of John’s medical record with them, including the post-
surgery echocardiogram (echo) and images of the patient’
heart captured during the surgery and a text summary of
the patient record. Dr. Burke also needs to outline the post
surgery care for John that should be followed by Dr. Mon-
teiro later. Given the echocardiagram and image are large,
they are only sent to the doctors when they request them.

7.2 Realizing Scenario in UCM

The realization of this healthcare scenario starts from cap-
turing the communication needs of this application using
CML and synthesizing the CML instance into a commu-
nication control script that UCM accepts and executes.
For the purpose of post-surgery conference, the following
scripts are generated on Dr. Burke’s side:

1. createConnections("c1");
2. sendSchema("c1","Dr.Burke","Dr.Sanchez,

Dr.Monteiro", controlSchema,dataSchema);
3. addParticipants("c1","Dr.Sanchez,

Dr.Monteiro");
4. enableMedia("c1", "LiveAudio");
5. sendForm("c1","patientRecord866",

(("summary",".../sum866.doc","sendNow"),
("echo",".../echo866.gif","sendOnDmd"),
("scan",".../scan866.mpg","sendOnDmd")));

6. sendMedia ("c1", "postSurgeryCare",
"www.cs.fiu.edu/john postcare.doc");

We currently have a preliminary prototype of UCM, which
could demonstrate the realization of communication ser-
vices through UCM. We use MS Access as the local reposi-
tory, with the macros stored in tables. However, we haven’t
yet performed a complete evaluation in terms of the perfor-
mance benefits of the UCM approach. Future evaluation
involves the comparison of script execution time of hard-
coded macros versus dynamically loaded macros; the com-
parison of the efforts of changing the execution logic of

214

CML models directly in SE versus changing related macros
without touching system code. Meanwhile, the research as-
pects of UCM leave open several issues such as:

Extension of macros: Currently, the functionality of
macros are limited to general communication services.
However, the extensible framework allows us to incorpo-
rate customized communication requirements for specific
communication applications. For example, future macros
could capture communication constraints like role-based
data transmission like doctors could only send patient dis-
charge form to the nurse, as well as security and pri-
vacy properties based on HIPAA in the healthcare domain.
Moreover, communication workflow such as referring doc-
tors need to send the patient discharge form to the nurse for
validation before sending to the discharge physician, could
also be captured and enforced by the macros in the UCM.

Ability to self-test UCM : Another interesting point with
the macro facility is its self-testing ability. Macros that
test the UCM could be developed, therefore providing us
with a systematic approach to test these components dur-
ing initialization and during adaptation. With the extension
of control scripts as well as frequent changes of the net-
work service provided, manual testing of UCM would be
more tedious and error-prone, and this makes self-testing a
rewarding feature worthy of future research.

8 Related Work

Domain specific middleware tailored for multimedia com-
munication services are extensively researched in the com-
munity, for providing flexible, customized communication
functionality. [12] proposed an end-system communica-
tion middleware called Da CaPo++ for multimedia appli-
cations. While it has similar purpose to our work in terms
of a high-level API and efficient runtime support, it targets
supporting applications in terms of flexible protocol selec-
tion and QoS support, not as a communication middleware
handling user centric sessions or facilitating model driven
development of commmunication services, as UCM does
in the context of CVM.

In [13], Narnia is proposed as a middleware that helps
programmers build distributed applications. It uses a col-
lection of programming abstractions to support the creation
of communication services and the Narnia virtual machine
as an event based run-time environment. Narnia is simi-
lar to our work but more focused on supporting application
servers that must respond to high server loads, with effi-
cient event addressing schemes while UCM is more con-
cerned with enforcing the user’s communication require-
ments specified in CML.

9 Conclusion

In this paper we presented the design of a user-centric
communication middleware (UCM) to support the rapid

realization of communication services in the communica-
tion virtual machine (CVM). The notion of control scripts,
macros and the supporting UCM architecture are presented
to show how it raises the level of abstraction than tradi-
tional middleware in realizing application-specific commu-
nication services. The execution environment provided by
UCM is also elaborated in a detailed fashion. Future work
involves evaluation of UCM, the extension of macros as
well as the self-testing ability of these macros.

Acknowledgement
This work was supported in part by the National Science
Foundation under grant HRD-0317692.

References

[1] Skype Limited. Skype developer zone, Feb. 2007. https:
//developer.skype.com/.

[2] Google. Google talk, September 2007. http://www.
google.com/talk/.

[3] Philippe Lasserre and Dennis Kan. User-centric
interactions beyond communications. Alca-
tel Telecommunications Review, 2005. http:
//alcaesd-f.nl.francenet.fr/docs/1/
S0503-UCBB_interactions-EN.pdf.

[4] Yi Deng, S. Masoud Sadjadi, Peter J. Clarke, Chi
Zhang, Vagelis Hristidis, Raju Rangaswami, and Nagarajan
Prabakar. A communication virtual machine. In Proceeding
of COMPSAC 06, pages 521–531. IEEE Computer Society,
2006.

[5] Peter J. Clarke, Vagelis Hristidis, Yingbo Wang, Nagarajan
Prabakar, and Yi Deng. A declarative approach for spec-
ifying user-centric communication. In Proceeding of CTS
2006, pages 89 – 98. IEEE.

[6] Object Management Group. Omg model driven architec-
ture, Oct. 2008. http://www.omg.org/mda/.

[7] Philip A. Bernstein. Middleware: a model for distributed
system services. Commun. ACM, 39(2):86–98, 1996.

[8] Wolfgang Emmerich, Mikio Aoyama, and Joe Sventek. The
impact of research on middleware technology. SIGOPS
Oper. Syst. Rev., 41(1):89–112, 2007.

[9] Douglas C. Schmidt. Middleware for real-time and embed-
ded systems. Commun. ACM, 45(6):43–48, 2002.

[10] Chi Zhang, S. Masoud Sadjadi, Weixiang Sun, Raju Ran-
gaswami, and Yi Deng. A user-centric network communi-
cation broker for multimedia collaborative computing. In
Proceedings of CollaborateCom 2006, pages 28–32. IEEE
Computer Society, November 2006.

[11] Andrew A. Allen, Sean Leslie, Yali Wu, Peter J. Clarke, and
Ricardo Tirado. Self-configuring user-centric communica-
tion services. In Third International Conference on Systems
(icons 2008), pages 253–259. IEEE, April 2008.

[12] Burkhard Stiller, Christina Class, Marcel Waldvogel, Ger-
mano Caronni, and Daniel Bauer. A flexible middleware for
multimedia communication: Design, implementation, and
experience. IEEE Journal on Selected Areas in Communi-
cations, 17(9):1614–1631, September 1999.

[13] Mauricio Cortes and J. Robert Ensor. Narnia: A virtual ma-
chine for multimedia communication services. In MSE ’02:
Proceedings of the Fourth IEEE International Symposium
on Multimedia Software Engineering, page 246, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

215

